Meet Inspiring Speakers and Experts at our 3000+ Global Conference Series Events with over 1000+ Conferences, 1000+ Symposiums
and 1000+ Workshops on Medical, Pharma, Engineering, Science, Technology and Business.

Explore and learn more about Conference Series : World's leading Event Organizer

Back

Raphael Kiekens

Vrije Universiteit Brussel ,Belgium

Title: The role of the 4-HTHDPS gene family in symbiotic and abiotic stress responses in plants of the Fabaceae family

Biography

Biography: Raphael Kiekens

Abstract

As the world faces more challenges linked to food security and environmental preservation, the specific characteristics of legumes (Fabaceae) make them important candidates to reach sustainable agriculture. Apart from their high protein content, legumes are relatively rich in the amino acid lysine. Lysine is referred to as an ‘essential’ amino acid, because it cannot be synthesized by humans or monogastric animals and is considered to be the most limiting dietary component in food and feed. The biosynthesis of lysine is tightly regulated by 4-hydroxy-tetrahydrodipicolinate synthase (4-HTHDPS), our candidate gene (family) of interest. Recently the 4-HTHDPS gene family of the model legume plant Medicago truncatula was analyzed, which led to the discovery of novel, legume specific, 4-HTHDPS genes with multiple amino acid substitutions on positions previously shown to be involved in feedback inhibition and of residues important for catalytic activity, possibly affecting the enzymatic properties of these isoforms. Furthermore, these newly discovered isoforms seem to be specifically upregulated in roots colonized with mycorrhizal fungi or infected with pathogens, thus suggesting a role for these 4-HTHDPS genes in pathogenesis in legumes. By use of natural variation, publically available - and induced CRISPR/Cas9 mutants, we want to elucidate the functions and interplay of all 4-HTHDPS isoforms within the aspartate metabolic pathway together with its role in symbiosis with Rhizobia and (a)biotic stress responses in Fabaceae.