Meet Inspiring Speakers and Experts at our 3000+ Global Conference Series Events with over 1000+ Conferences, 1000+ Symposiums
and 1000+ Workshops on Medical, Pharma, Engineering, Science, Technology and Business.

Explore and learn more about Conference Series : World's leading Event Organizer

Back

Ruud A Weusthuis

Wageningen University & Research, The Netherlands

Title: Monascus ruber as cell factory for lactic acid production at low pH

Biography

Biography: Ruud A Weusthuis

Abstract

A Monascus ruber strain was isolated that was able to grow on mineral medium at high sugar concentrations and 175 g/l lactic acid at pH 2.8. Its genome and transcriptomes were sequenced and annotated. Genes encoding lactate dehydrogenase (LDH) were introduced to accomplish lactic acid production and two genes encoding pyruvate decarboxylase (PDC) were knocked out to subdue ethanol formation. The strain preferred lactic acid to glucose as carbon source, which hampered glucose consumption and therefore also lactic acid production. Lactic acid consumption was stopped by knocking out 4 cytochrome-dependent LDH (CLDH) genes, and evolutionary engineering was used to increase the glucose consumption rate (figure 1). Application of this strain in a fed-batch fermentation resulted in a maximum lactic acid titer of 190 g/l at pH 3.8 and 129 g/l at pH 2.8, respectively 1.7 and 2.2 times higher than reported in literature before. Yield and productivity were on par with the best strains described in literature so far.